MCP Server for AI Coding Agents
Give your AI coding agents live access to image generation with @inliner/mcp-server. Works with Claude Code, Cursor, GitHub Copilot, Gemini CLI, Windsurf, and any Model Context Protocol compatible tool.
What is MCP?
The Model Context Protocol (MCP) is an open standard that allows AI assistants to interact with external tools and services. With the Inliner MCP server, your AI coding agent can:
- Generate images and save them to your project
- Edit existing images with AI instructions
- Check your credit usage and plan details
- List your projects and generated images
- Get recommended dimensions for common use cases
Quick Setup by Platform
Claude Code
claude mcp add inliner -- npx @inliner/mcp-server
OpenAI Codex CLI
Add to ~/.codex/config.toml
[mcp.inliner]
command = "npx"
args = ["@inliner/mcp-server"]
Gemini CLI
Add to ~/.gemini/settings.json
{
"mcpServers": {
"inliner": {
"command": "npx",
"args": ["@inliner/mcp-server"]
}
}
}
Cursor / VS Code
Create .cursor/mcp.json in project root
{
"mcpServers": {
"inliner": {
"command": "npx",
"args": ["@inliner/mcp-server"],
"env": { "INLINER_API_KEY": "your-key" }
}
}
}
Windsurf
Add to Windsurf MCP settings
{
"mcpServers": {
"inliner": {
"command": "npx",
"args": ["@inliner/mcp-server"],
"env": { "INLINER_API_KEY": "your-key" }
}
}
}
GitHub Copilot
Add to VS Code MCP settings
{
"mcpServers": {
"inliner": {
"command": "npx",
"args": ["@inliner/mcp-server"]
}
}
}
env field in MCP configuration for better compatibility with all clients.
Available Tools
generate_image_url
Build a properly formatted Inliner image URL from description, dimensions, and project
generate_image
Generate an image, poll until ready, and optionally save to a local file
create_image
Quick alias for generating images with sensible defaults (800x600 PNG)
edit_image
Edit an existing image by URL or upload a local image, apply edits, and save
get_projects
List all your Inliner projects with namespaces and settings
create_project
Create a new project and reserve a namespace for image generation
get_project_details
Get detailed project config: namespace, custom prompt, reference images
get_usage
Check remaining credits (image, edit, infill, enhance)
get_current_plan
View current subscription plan and feature allocations
list_images
List generated images with optional project filter
get_image_dimensions
Get recommended dimensions for common use cases (hero, product, profile, etc.)
Example Interactions
Once installed, you can talk to your AI agent naturally:
Resources
The MCP server also provides resources that agents can reference:
inliner://guide- Quick reference for URL format, dimensions, and style hints